Sliding wear of nanocrystalline Ni–W: Structural evolution and the apparent breakdown of Archard scaling
نویسندگان
چکیده
Sliding wear of nanocrystalline Ni-W alloys with grain sizes from 3 to 45 nm, a range which spans the transition in deformation mechanisms from intrato intergranular, is studied through pin-on-disk wear testing. The extreme conditions produced during sliding wear are found to result in structural evolution and a deviation from Archard scaling for the finest grain sizes; in the finest nanocrystalline materials, wear resistance is higher than would be expected based on hardness alone. The repetitive sliding load is found to lead to a modest amount of grain growth and grain boundary relaxation, which in turn leads to local hardening in the wear track. Analysis of the dynamic microstructure suggests that it is produced primarily as a result of local plasticity, and is not principally due to frictional heating.
منابع مشابه
Abrasive wear response of nanocrystalline Ni–W alloys across the Hall–Petchbreakdown
The abrasive wear of nanocrystalline Ni–W alloys with grain sizes of 5–105 nm has been studied using Taber abrasion testing. The wear resistance of the finest grain size specimen is found to be higher than would be predicted based on hardness alone. This deviation from Archard scaling is traced to mechanically-driven structural evolution, consisting of grain growth and grain boundary relaxation...
متن کاملNanocrystalline Alloys: Enhanced Strengthening Mechanisms and Mechanically-Driven Structural Evolution
Nanocrystalline materials have experienced a great deal of attention in recent years, largely due to their impressive array of physical properties. In particular, nanocrystalline mechanical behavior has been of interest, as incredible strengths are predicted when grain size is reduced to the nanometer range. The vast majority of research to this point has focused on quantifying and understandin...
متن کاملWear behavior of carbon steel electrodeposited by nanocrystalline Ni–W coating
Ni-W coatings, compared to pure nanocrystalline Ni, exhibit higher hardness and wear resistance. In some cases, these coatings are considered as environmental friendly alternatives for hard chromium coating. Till now, most of Ni-W coatings have been produced by direct current electrodeposition from alkaline baths. In this study square pulse current was used for deposition of Ni-W precipitates f...
متن کاملMechanisms of near-surface structural evolution in nanocrystalline materials during sliding contact
The wear-driven structural evolution of nanocrystalline Cu was simulated with molecular dynamics under constant normal loads, followed by a quantitative analysis. While the microstructure far away from the sliding contact remains unchanged, grain growth accompanied by partial dislocations and twin formation was observed near the contact surface, with more rapid coarsening promoted by higher app...
متن کاملThe effect of TiO2 concentration on microstructure, corrosion behavior and wear behavior of Ni-P-W-TiO2 coating
Nickel-phosphorus coatings (Ni-P) are widely used in industry due to their high hardness, corrosion resistance and very good mechanical and chemical properties. Oxide particles such as TiO2 can be used to increase the wear resistance of these coatings. In this study, the Ni-P-W-TiO2 composite coating was deposited on the AISI 304L steel substrate using the electroplating method. Electroplating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010